Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 11(9): 1201-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27312887

RESUMO

D-Glucaric acid can be produced as a value-added chemical from biomass through a de novo pathway in Escherichia coli. However, previous studies have identified pH-mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo-inositol oxygenase (MIOX) enzyme to be rate-limiting. We ported this pathway to Saccaromyces cerevisiae, which is naturally acid-tolerant and evaluate a codon-optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by their MIOX gene - either the previous version from Mus musculus or a homologue from Arabidopsis thaliana codon-optimized for expression in S. cerevisiae - in order to identify the rate-limiting steps for D-glucaric acid production both from a fermentative and non-fermentative carbon source. myo-Inositol availability was found to be rate-limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously used M. musculus MIOX activity was found to be rate-limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed-batch mode, and 1.6 g/L from glucose supplemented with myo-inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Ácido Glucárico/metabolismo , Inositol Oxigenase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Animais , Técnicas de Cultura Celular por Lotes/métodos , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Genética , Glucose/metabolismo , Inositol/metabolismo , Inositol Oxigenase/genética , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Nucleic Acids Res ; 41(9): e99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470991

RESUMO

A major hurdle to evolutionary engineering approaches for multigenic phenotypes is the ability to simultaneously modify multiple genes rapidly and selectively. Here, we describe a method for in vivo-targeted mutagenesis in yeast, targeting glycosylases to embedded arrays for mutagenesis (TaGTEAM). By fusing the yeast 3-methyladenine DNA glycosylase MAG1 to a tetR DNA-binding domain, we are able to elevate mutation rates >800 fold in a specific ∼20-kb region of the genome or on a plasmid that contains an array of tetO sites. A wide spectrum of transitions, transversions and single base deletions are observed. We provide evidence that TaGTEAM generated point mutations occur through error-prone homologous recombination (HR) and depend on resectioning and the error-prone polymerase Pol ζ. We show that HR is error-prone in this context because of DNA damage checkpoint activation and base pair lesions and use this knowledge to shift the primary mutagenic outcome of targeted endonuclease breaks from HR-independent rearrangements to HR-dependent point mutations. The ability to switch repair in this way opens up the possibility of using targeted endonucleases in diverse organisms for in vivo-targeted mutagenesis.


Assuntos
DNA Glicosilases/genética , Mutagênese Sítio-Dirigida/métodos , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Glicosilases/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Taxa de Mutação , Regiões Operadoras Genéticas , Mutação Puntual , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...